

1These functions are eventlog-adaptations from the same-titled dplyr-

functions. For more information, check dplyr.tidyverse.org.

bupaR::eventlog(eventlog = data,
case_id = “order_number”,
activity_id = “activity”,
activity_instance_id = “activity_nr”,
timestamp = “time”,
lifecycle_id = “status”,
resource_id = “originator”)

bupaR::simple_eventlog(eventlog = data,
case_id = “order_number”,
activity_id = “activity”,
timestamp = “time”)

bupaR::isimple_eventlog(eventlog = data)

bupaR::ieventlog(eventlog = data)

An eventlog-object can be created using the eventlog

function. This function needs as arguments a data.frame

and the column names of the appropriate fields descri-

bing the case identifier, activity identifier, timestamp, li-

fecycle transition, resource and an activity instance iden-

tifier.

An event log with minimal requirements (timestamp, ca-

se and activity identifier) can be created with the sim-

ple_eventlog function.

Both functions have an alternative, prefixed with the let-

ter i for interface, in order to configure the identifiers

with a GUI. In that case only the data needs to be provi-

ded as argument.

Create Event Log Objects

bupaR::mapping(eventlog)

Event Data Repository

Reading and Writing XES-files

Basic Event Log Functionalities

bupaR::n_activities(eventlog)

bupaR::n_activity_instances(eventlog)

bupaR::n_cases(eventlog)

bupaR::n_events(eventlog)

bupaR::n_resource(eventlog)

bupaR::n_traces(eventlog)

bupaR::activity_id(eventlog)

bupaR::activity_instance_id(eventlog)

bupaR::case_id(eventlog)

bupaR::lifecycle_id(eventlog)

bupaR::resource_id(eventlog)

bupaR::timestamp(eventlog)

bupaR::slice(eventlog, n:m)

bupaR::sample_n(eventlog, n)

bupaR::summary(eventlog)

bupaR::mutate(eventlog, ...)

bupaR::traces(eventlog)

bupaR::cases(eventlog)

bupaR::activities(eventlog)

bupaR::resources(eventlog)

bupaR::group_by(eventlog, ...)

Create a summary of an eventlog-object. Retrieve basic

information on activities, cases, resources and traces,

such as the absolute and relative frequences.

Obtain the mapping of an eventlog (set of identifiers) or

obtain single identifiers.

Calculate the number of distinct activities, activity instan-

ces, cases, events, resources and traces.

Subset of slice of the event log from row n until row m.1

Sample n cases from the event log.1

Add new variables to the event log (using arithmetic

operations, case_when, ifelse, etc.).1

Group an event log on one or more event or case attribu-

tes.1

 Getting Started Process Analysis Workflows

install.packages(“bupaR”)
install.packages(“eventdataR”)
install.packages(“xesreadR”)
install.packages(“edeaR”)
install.packages(“processmapR”)
install.packages(“processmonitR”)

In order to start using bupaR, install the required

packages from the Comprehensive R Archive Network

(CRAN), using the install.packages function.

The packages can be loaded with the library func-

tion. Loading bupaR will load all the related packages.

The latest versions of the packages can be installed from

github using the install_github function from de-

vtools. Contributions and bugfixes to the packages are

welcome on github. Please visit https://github.com/

gertjanssenswillen/bupaR.

library(bupaR)

devtools::install_github(
“gertjanssenswillen/<package>“
)

Exploratory and Descriptive Event Data Analysis

Over the past decades, the open source statistical language R has seen

an enormous increase in popularity, not only among data science resear-

chers, but also within companies. One of the reasons for this rising popu-

larity is the R-package ecosystem on CRAN and github to which everyone

can contribute. Recently, the number of packages available on CRAN has

exceeded 10.000. These provide a huge range of functionalities, covering

a diverse set of techniques and applications.

bupaR is an open-source suite for the handling and analysis of business

process data in R developed by the Business Informatics research group

at Hasselt University, Belgium. The central package includes basic func-

tionality for creating event log objects in R. It contains several functions

to get information about an event log and also provides specific event

log versions of generic R functions.

edeaR, which stands for Exploratory and Descriptive Event-Data Analy-

sis, provides several functions for in-depth analysis of event logs, as well

as a diverse set of subsetting methods. Process visualizations can be ma-

de with the processmapR package, while the processmonitR package

provides various off-the-shelf dashboards for process monitoring. An in-

terface with the XES-standard is provided by the xesreadR package, whi-

le a set of event logs are supplied through the eventdataR package.

Lo
g

C
ase

Trace

A
cti

vity

R
eso

u
rce

R
eso

u
rce-acti

vity

edeaR::activity_frequency

edeaR::activity_presence

edeaR::end_activities

edeaR::idle_time

edeaR::number_of_repetitions

edeaR::number_of_selfloops

edeaR::number_of_traces

edeaR::processing_time

edeaR::resource_frequency

edeaR::resource_involvement

edeaR::resource_specialisation

edeaR::size_of_repetitions

edeaR::size_of_selfloops

edeaR::start_activities

edeaR::throughput_time

edeaR::trace_coverage

edeaR::trace_length

Event Data Subsetting

Conditional Process Analysis

Process Dashboards

Process Visualizations

edeaR provides a varied set of metrics to

analyse event logs. Each of the metrics,

listed in the table to the left, has a set of

analysis-levels at which they can be com-

puted. These levels can be log, case, tra-

ce, activity, resource and resource-

activity. These levels allow the user to

conduct the analysis at the appropriate

level of granularity.

A metric can be calculated as follows.

eventlog %>% 1

<metric>(2

level= “log”, 3

…) 4

1 The dataset

2 The metric to compute

3 The desired analysis level

4 Optional arguments, e.g. time units

in case of throughput time.

While each of the metrics returns a data

frame or vector with numerical results,

they can be very easily visualized using

the generic plot function. The latter

has been adapted to accomodate each

of the metrics and analysis levels with an

appropriate visual, and can be added to

the workflow with just another %>% sym-

bol, as shown in the example on the left.

Although no prior knowledge about visu-

alization methods in R is necessary, the

resulting plot is a ggplot-object which

can be customized according to the wis-

hes of the end users when desired. By

adding ggplot-layers after the plot func-

tion, one can change the colors of the

plot, the labels on the axis, add titles or

adjust the overal theme. More informati-

on on ggplot2 can be found on http://

ggplot2.org/.

patients %>% activity_frequency(level = "activity")

A tibble: 7 x 3
 handling absolute relative
 <chr> <int> <dbl>
1 Blood test 474 0.08710033
2 Check-out 984 0.18081588
3 Discuss Results 990 0.18191841
4 MRI SCAN 472 0.08673282
5 Registration 1000 0.18375597
6 Triage and Assessment 1000 0.18375597

patients %>% activity_frequency(level = "activity")
%>% plot()

EVENT FILTERS
Subsetting event data with edeaR can be

done on two levels: on the level of

events or on the level of cases.

Each of the subsetting methods starts with

the word filter, and each of them has an

interactive alternative starting with ifilter.

Most of the filters can be specified in va-

rious ways by using different arguments,

and each of the filters has a reverse argu-

ment to reverse the selection.

Filtering events can be done by activity la-

bel, activity frequency, attribute condi-

tions, resource labels, by trimming cases

to a time period, or by trimming cases

between specified activities.

Filtering cases can be done based on the

presence or absence of activities, based

on case identifier, the end points of the

case (i.e. start and end activity), preceden-

ce conditions, processing or throughput

time, time periods, trace freqency or tra-

ce length.

CASE FILTERS

edeaR::ifilter_activity

edeaR::ifilter_activity_Frequency

edeaR::filter_attributes

edeaR::ifilter_resource

edeaR::ifilter_resource_frequency

edeaR::ifilter_time_period

edeaR::ifilter_trim

edeaR::ifilter_activity_presence

edeaR::ifilter_case

edeaR::ifilter_endpoints

edeaR::ifilter_precedence

edeaR::ifilter_processing_time

edeaR::ifilter_throughput_time

edeaR::ifilter_time_period

edeaR::ifilter_trace_frequency

edeaR::ifilter_trace_length

patients %>% filter_activity_frequency(percentile = 0.8)
patients %>% filter_activity_presence(

c("Registration","Check-out"), method = "all")
patients %>% filter_time_period(

start_point = ymd(20170101),
end_point = ymd(20170131),
filter_method = "start", reverse = T)

The examples filter the log based on (1)

frequent activities covering 80% of the

events, (2) cases having both Registrati-

on and Check-out activities and (3) cases

which did not started in January 2017.

All functions within the scope of bupaR are designed to be used with the magrittr::%>% symbol. This symbol allows the first

argument of a function to be moved upfront.

x %>% f(y) is the same as f(x,y)

y %>% f(x, ., z) is the same as f(x,y,z)

Using this symbol makes it very easy to create workflows for you process analysis, as in the examples below.

xesreadR::read_xes(xesfile)

xesreadR::read_xes_cases(xesfile)

xesreadR::write_xes(eventlog,
xesfile,
case_attributes)

eventdataR::BPIC_14_incident_log

eventdataR::BPIC_14_incident_case_attributes

eventdataR::BPIC_15_1

eventdataR::sepsis

eventdataR::patients

Created and maintained by Gert Janssenswillen

Email gert.janssenswillen@uhasselt.be

Contributors benoit.depaire@uhasselt.be

marijke.swennen@uhasselt.be

mieke.jans@uhasselt.be

Website www.bupar.net

patients %>%
filter_trace_length(upper = 10) %>%
precedence_matrix() %>%
plot()

patients %>%
sample_n(size = 100) %>%
filter_resource_frequency(perc = 0.8) %>%
resource_frequency(“resource”) %>%
plot()

processmapR::process_map

processmapR::resource_map

processmapR::idotted_chart

processmapR::precedence_matrix %>% plot

processmapR::trace_explorer

processmapR::resource_matrix %>% plot

The processmapR package provides functions to visualize processes, both from a control-flow perspective and from a resource

perspective. The process_map function allows the user to analyse control-flow from a frequency and a performance per-

spectives. The precendence_matrix provides a more compact overview of the process flows. Furthermore, the package

provides functions to explore (in)frequent traces and a dotted chart (including an interactive version). Also resource maps and

matrices can be made.

The processmonitR package provides predefined dashboards to interactively monitor processes from different perspectives. Cur-

rently, four different dashboards are provided: 1) an activity dashboard, focused on activities, 2) a resource dashboard, focusing

on resources, 3) a rework dashboard, focusing on rework and waste, such as self-loops and repetitions, and a 4) performance

dashboard, focusing on the time perspective, i.e. throughput time, processing time and idle time.

Each dashboard combines several of the metrics and visualization from other bupaR packages into easy to use and navigate

dashboards. The dashboards, implemented in Shiny, can be used as standalone dashboards, or incorporated into larger, tailor-

made process monitoring dashboards.

processmonitR::rework_dashboard

processmonitR::resource_dashboard processmonitR::activity_dashboard

processmonitR::performance_dashboard

bupaR facilitates conditional process analysis, by

making it possible to compute metrics and visuali-

zations for values of case/event attributes or even

combination of attributes.

This is achieved by an adaption of the group_by

function from dplyr for eventlogs. In order to con-

dition a certain metric on one or more variables,

the group_by function needs to be inserted as

shown in the examples on the right. Also the visu-

alizations, as created with plot, will reflect the

distinction between different groups.

eventlog %>%
group_by(label, gender) %>%
throughput_time(“log”)

A tibble: 8 x 10

 label gender min q1 median mean q3 max st_dev iqr

 <fctr> <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Bronze Female 10 16.00 21.0 24.98 28.25 117 14.35 12.25

2 Silver Female 10 14.00 20.0 23.03 29.00 86 11.93 15.00

3 Bronze Male 10 14.25 20.0 23.84 29.00 79 12.26 14.75

4 Gold Female 10 16.00 19.5 22.81 27.00 55 11.08 11.00

5 Silver Male 10 16.00 22.0 25.69 30.00 97 14.53 14.00

6 Gold Male 10 18.00 23.0 25.62 31.00 64 11.07 13.00

7 Platinum Male 10 14.00 20.0 22.60 27.00 53 10.45 13.00

8 Platinum Female 10 16.00 20.0 22.51 27.00 54 9.73 11.00

eventlog %>%
group_by(label, gender) %>%
throughput_time(“log”) %>%
plot

This poster discusses the bupaR
packages according to the following
released versions:

bupaR 0.3.0
edeaR 0.7.0

eventdataR 0.1.1
processmapR 0.2.0

processmonitR 0.1.0
xesreadR 0.2.1

The software is provided "as is", without
warranty of any kind, express or implied,
including but not limited to the warranties
of merchantability, fitness for a particular
purpose and noninfringement. In no event
shall the authors or copyright holders be
liable for any claim, damages or other
liability, whether in an action of contract,
tort or otherwise, arising from, out of or in
connection with the software or the use or
other dealings in the software.

2017 © UHasselt
www.bupar.net

Event logs and a list of cases with attributes can be im-

ported from a XES-file using the read_xes and

read_xes_cases. Note that the read_xes also re-

turns the case_attributes in the event log. write_xes

can be used to write an event log to a XES-file.

The eventdataR package gives access to several event

log examples, both real-life and artificial. The nature and

origin of each of the data sets can be found in the ac-

companying documentation.

